
A Vector Quantization Approach to Scenario
Generation for Stochastic NMPC

Graham C. Goodwin†, Jan Østergaard‡,
Daniel E. Quevedo? and Arie Feuer◦

† ‡ ? School of Electrical Engineering and Computer Science,
The University of Newcastle, NSW 2300, Australia

◦ The Technion, Haifa 32000, Israel
†graham.goodwin@newcastle.edu.au
‡janoe@ieee.org ?dquevedo@ieee.org

◦feuer@ee.technion.ac.il

Keywords : Scenario generation, closed loop control, stochastic nonlinear model pre-
dictive control, vector quantization

Abstract : This paper describes a novel technique for scenario generation aimed at
closed loop stochastic nonlinear model predictive control. The key ingredient in the
algorithm is the use of vector quantization methods. We also show how one can impose
a tree structure on the resulting scenarios. Finally, we briefly describe how the scenarios
can be used in large scale stochastic nonlinear model predictive control problems and
we illustrate by a specific problem related to optimal mine planning.

1 Introduction
The motivation for the research described in the current paper arises from large scale
optimization problems having a temporal component. A specific example of such a
problem is open-cut mine planning. In this example, the goal is to determine the value
of an asset by carrying out an optimization of possible future actions over a suitable
planning horizon (typically 20 years for a mine). Such problems can be converted into
nonlinear model predictive control problems by appropriate choice of variables. An
important feature of such problems is that they contain a large number of inputs and
states. Indeed, a simplified version of the mine optimization problem involves tens of
thousands of state variables. Hence, even after the application of spatial and temporal
aggregation, it typically takes many hours to carry out the required optimization on
a high speed computer. Another important feature of such problems is that there are
usually variables whose future values cannot be accurately predicted. For example, in
the case of mining, one does not know the future price that the ore will bring. Hence it is
desirable to treat such problems in a stochastic setting. Alas, the issue of computational
complexity now becomes critical.

The usual model predictive control (MPC) paradigm used in industrial control to
deal with uncertainty is the so called “receding horizon” approach. Here one typically
uses open loop optimization to determine the control sequence over some horizon and
then one applies the first control action. At the next time instant, one measures (or
estimates) the state and then recomputes the control over a future control horizon and
the first control step is again implemented. This strategy is very well known to the
control community and has been extremely successful in practice [2, 3, 4, 5]. This kind

of strategy “reacts” to disturbances when they occur (since the input is recalculated
based on the measured state). However, no explicit account is taken of the fact that, in
the future, we will have more information about the uncertain states than we do at the
present time. Control strategies which implement the latter policy are usually termed
“closed loop” and lead to so-called scenario trees [6, 7]. Also, there exist intermediate
strategies in which a restricted form of feedback is allowed; see, e.g., [8], which studies
robust constraint satisfaction and closed loop stability for a class of uncertain linear
stochastic models.

There exists a substantial literature1 on “closed loop” optimization in the stochastic
programming literature [9]. There has also been some interest in the topic in recent
control literature. For example, the work [10] considers closed loop policies based on
the vertices of an assumed set.

Our particular interest in the current paper resides in cases where the state dimen-
sion is very large and the underlying system is highly nonlinear. Clearly, in such a
problem one needs to be extremely careful with stochastic optimization since the as-
sociated computations can easily become intractable. The end result of this line of
reasoning is that one can, at best, deal with a “handful” (say several hundred) possible
realizations of the uncertain elements in the problem. This, in turn, raises the issue
of how one should choose this “handful” of realizations (which we term “scenarios”)
so they give representative “coverage” of the likely outcomes. To illustrate the diffi-
culty of this problem, we note that if we utilize an optimization horizon of 20 steps
and we consider just 10 values for the uncertain variables at each step then this gives
1020 realizations of the uncertain process. Since in non-convex stochastic optimization
the computational time grows linearly with the number of scenarios, then if it takes
several hours to deal with one realization, then clearly 1020 realizations is completely
impossible. (It would take 1017 years!). Obviously, careful choice of the scenarios is
an important question in this context.

The topic of scenario generation has been addressed extensively in the stochastic
programming literature. For example, in [11, 12, 13], scenario tree generation for
specific multi-stage optimization problems is considered. In these works, algorithms
are proposed which in certain cases and for the Wasserstein (transportational) distance
metric, lead to optimal scenario trees. For alternative approaches, see, e.g. [14, 15].

One obvious recommendation made in the literature is that one should ideally de-
sign the scenarios taking into account the “true problem”. However, this is not sensible
in the context of complex problems since it is computationally intractable to compare
different scenario patterns, e.g., via a Monte-Carlo study. Indeed, if this were possible,
then one could simply carry out the intended design directly.

Our strategy will be to divide the problem into two stages. In the first stage, we will
carry out scenario design based on a simple measure of scenario performance. In this
stage, we rely upon the fact that the number of uncertain variables is typically small
(say 2 or 3 in the case of the mining problem). Then, in a second stage, we will utilize
the scenarios on the “true problem”. This “divide-and-conquer” strategy is aimed at
making the overall problem computationally tractable. The novel contribution in the
current paper is to link the problem of scenario generation to code book design in vector
quantization. This link allows us to develop a new strategy for scenario generation. We
also explain several embellishments of the basic scheme including how to enforce a
tree structure on the scenarios. The latter is used for closed loop stochastic control.

The layout of the remainder of the paper is as follows: In section 2, we give a brief

1The policies are sometimes said to be “with recourse” in the stochastic programming literature.

overview of the mine planning problem so as to place the subsequent work in a practi-
cal context. In section 3 we briefly review different stochastic optimization strategies.
Section 4 contains the key result of the paper, namely, the scenario generation algo-
rithm. In section 5 we briefly return to the mine planning problem and conclusions are
given in section 6.

2 Motivational Problem
Before describing the scenario generation strategy, we will first set the work in a prac-
tical context by briefly describing the optimal mine planning problem [1, 5].

The key idea is as follows: given geological data based on preliminary exploration,
determine where and when to dig. The optimization problem can be cast as a mixed
integer linear programming (MILP) problem. A host of constraints need to be satisfied
e.g. mining capacity in each year, slope constraints on the walls of the mine, precedent
constraints on the order in which material is removed, processing plant constraints etc.

If one adopts the, so called, block model approach, then one divides the mine into
blocks say 100 × 100 on the surface and 10 vertically. This gives 105 blocks. Over a
15 year horizon, this gives 1075 decisions on when to remove a block. Interestingly,
1075 is approximately the number of atoms in the known universe, so clearly some
simplifications are necessary.

The basic problem can be given a nice interpretation in the NMPC framework.
To see how this can be done, we divide the surface into rectangular blocks {j =
1, . . . ,M ; k = 1, . . . ,M} as shown in Fig. 1.

j

k
xjk(t)

Figure 1: Block model of a mine.

Let xjk(t) denote the depth at location j, k at time t, ujk(t) ∈ {0, 1} denote the
decision to mine (1) or not to mine (0) at time t. Then a simple state space model is

xjk(t) = xjk(t− 1) + bujk(t). (1)

The various constraints take the form
∑

jk hl
jkxjk ≤ bl. The cost function can be

expressed as J =
∑N

t=1 dtct

∑
j,k Vj,k(xjk(t))uj,k, where Vjk(xjk(t)) denotes the

amount of ore at depth xjk(t) in location (j, k), dt denotes a discount factor and ct

denotes the value of ore at time t.

3 Stochastic Optimization Strategies
The simplified description of the mine planning problem given above implicitly as-
sumes that the value of the ore is known. However, future values of this variable are

certainly not exactly known. Several strategies can be adopted to deal with this uncer-
tainty as described below:

Open Loop Policies Here one carries out the design based on some nominal trajec-
tory (say the expected value) for the uncertain variables. Then one applies the strategy
irrespective of what actually happens. This may sound rather strange to the control
community but, in mine planning, certain decisions (e.g. how large to make the pro-
cessing plant) cannot easily be changed in the light of updated information.

Receding Horizon (or Reactive) Policies Here one bases the original design on
some nominal trajectory for the uncertain variables. However, one only implements
the first stage. One then re-does the optimization when new information is obtained
(i.e. one “reacts” to incoming data). This idea is central to model predictive control
and will be very familiar to the control community.

Closed Loop Policies These policies take account of the fact that, in the future, we
will have additional information not available now. Closed loop policies typically lead
to function optimization problems in which one designs a mapping from the future
information state to the control. We give a brief overview of the dynamic programming
(DP) approach to these policies.

Let Ik denote the information available to the controller at time k, that is

Ik = (y0, . . . , yk, u0, . . . , uk−1). (2)

The required control policy π(µ0, . . . , µN−1) maps Ik into the control space ck. A
key feature is the non-anticipatory constraint i.e. decisions can only be based on the
information that has been revealed so far.

The cost function takes the form:

Jπ = E
z0,{ωk},{νk}

{
gN (xN) +

N−1∑
k=0

gk(xk, µk(Ik), ωk)

}
(3)

where the state evolution satisfy xk+1 = fk(xk, µk(Ik), ωk). The available measure-
ments are y0 = h0(x0, ν0) and yk = hk(xk, µk−1(Ik−1), νk), where {ωk}, {νk} are
i.i.d. sequences (typically Gaussian distributed).

The associated DP equations are

JN−1(IN−1) = min
uN−1∈UN−1

{
E

xN−1,ωN−1

[
gN (fN−1(xN−1, uN−1, ωN−1))

+ gN−1(xN−1, uN−1, ωN−1)|IN−1, µN−1

]} (4)

and for k = 0, . . . , N − 2

Jk(Ik) = min
uk∈Uk

{
E

xk,ωk,yk+1

[
gk(xk, uk, ωk) + Jk+1(Ik, yk+1, uk)|Ik, µk

]}
. (5)

A Simple Example To illustrate closed loop planning, we consider the simple two-
stage stochastic decision problem in Fig. 2. We see in this figure that there is only
one random variable, ω, which takes one of two values, ω1, ω2 with equal probability.
There are two stages in the problem and two decisions for the control at each stage.
Thus, at stage 1, u0 can be chosen as a or b and at stage 2, u1 can be chosen as a or b.
The final rewards (cost function) are shown on the right of the diagram.

u0
= a,

ω = ω2

u0 = a, ω = ω1

u
0 =

b u1 = a

u1 = a

u1 = a

u1 = b

u1 = b

u1 = b

−$50, 000

−$50, 000

+$50, 000

+$50, 000

+$1

+$2

Figure 2: Simple example.

Optimal open loop and reactive policies do not use the fact that the state will be
known after stage 1 has been completed. Thus open loop and reactive policies both
lead to the same return of $2. This can be seen from the following simple argument:

Say we apply u0 = a; then whatever we do next gives ±$50, 000 with equal
probability. Hence, the expected return is $0. However, u0 = b, u1 = a returns $1
and u0 = b, u1 = b returns $2. Thus, in conclusion, the best open loop strategy is
u0 = b, u1 = b yielding $2 (we would get the same answer with a reactive policy).

For the closed loop case, we add the extra information that we will know where we
have reached at the end of stage 1. The obvious closed loop policy is; u0 = a, then
u1 = a if ω = ω1 which implies a return of $50, 000 and u0 = a, then u1 = b if
ω = ω2 which implies a return of $50, 000.

We see from the above that a closed loop strategy can give significant benefits
compared with open loop or reactive. At a heuristic level the closed loop policy keeps
“all options open” and avoids being “painted into a corner” by the first move.

Computational Issues The computational burden associated with the design of closed
loop policies grows linearly with the number of alternatives considered for the uncer-
tain variables. Hence, it is usually essential to restrict the cardinality of the set of alter-
natives for the uncertain variables. The philosophical basis of the strategy is to carry
out extensive off-line calculations (by Monte Carlo-like techniques) so as to design a
small set of scenarios which are then used in the on-line solution of the optimization
problem. This amounts to replacing a very complex on-line problem by a simpler on-
line problem based on the pre-computed scenarios. The issue of how to choose the
representative set of alternatives is addressed in the next section.

4 Scenario Generation
The goal of scenario generation is to come up with a (relatively small) set of represen-
tative trajectories for a stochastic process. A specific example is that of ore prices as
described in section 2.

A “brute force” method is to use Monte Carlo type methods to simulate a set of tra-
jectories using different “seeds” for the underlying innovation process. This is known
to perform well for a large number of scenarios. However, in the case where the cardi-
nality of the scenario set is severely restricted, then it is prudent to exercise some care
in the scenario selection.

In the next subsection we describe the key novel contribution of this paper, namely,
linking the problem of scenario generation to vector quantization.

Vector Quantization Let us first briefly review some important properties of vector
quantization (VQ). For a thorough introduction to VQ we refer the reader to [16, 17].

An L-dimensional vector quantizer QL is a (nonlinear and non-invertible) map, say
QL : RL → C, where C is a discrete set of M distinct elements given by

C , {ci ∈ RL : i = 1, . . . ,M}. (6)

The set C is also known as a codebook and the element ci ∈ C is usually referred to as
the ith codeword or ith reconstruction point.

It is convenient to decompose QL into a cascade of two functions, e.g. QL(·) =
β(α(·)) where α is referred to as the encoder and β is the decoder. The encoder is a
many-to-one function which maps points in RL to indices, i.e. α : RL → I, where I
is an index set defined as

I , {i ∈ N : i = 1, . . . ,M}. (7)

We then define α(x) , i if and only if x ∈ Si where Si ∈ S and where

S , {Si ⊂ RL : i = 1, . . . ,M}. (8)

We generally require that S “cover” RL, i.e. RL ⊆ S and moreover that any pair of
subsets (Si, Sj), i 6= j, do not overlap except possibly at their boundaries.

The decoder is given by β : I → C, where I is given by (7) and C by (6). With
this, we establish the following:

QL : x 7→ ci ⇔ x ∈ Si ⇔ α(x) = i, β(i) = ci so that QL(x) = β(α(x)). (9)

Given a distortion measure (or cost function) ρ : RL×C → R+ we define a Voronoi
cell V i :

V i , {x ∈ RL : ρ(x, ci) ≤ ρ(x, cj), j = 1, . . . ,M}, i = 1, . . . ,M. (10)

It follows that if QL is a nearest neighbor quantizer, then Si = V i and this is in fact
an optimal encoder for the given decoder, i.e. for the given set of codewords C [16].

Let φX(x) denote the probability density function for the random variable X .
Then, an optimal quantizer is one that, for a given M , minimizes the expected cost
J where

J = Eρ(X, QL(X))

=
M∑
i=1

∫
x∈Si

φX(x)ρ(x, ci) dx =
M∑
i=1

P (X ∈ Si)E[ρ(x, ci)|X ∈ Si].
(11)

In simple cases, the codeword ci only appears in one of the terms of the sum in (11).
It then follows that the optimal codeword, given the set Si, is the generalized centroid
of Si. Specifically, given Si ∈ S

ĉi = arg min
ci∈RL

E
[
ρ(X, ci)|X ∈ Si

]
= arg min

ci∈RL

∫
x∈Si

φX(x)ρ(x, c) dx∫
x∈Si

φX(x) dx
. (12)

In other words, given the encoder, or equivalently, given the set S, the optimal decoder
is defined by the set of reconstructions points C = {ĉi : i = 1, . . . ,M}, where ĉi is
given by (12).

An optimal quantizer is therefore a nearest neighbor quantizer having centroids
as codewords [16]. For example, if ρ is the squared error distortion measure, i.e.
ρ(x, x′) = ‖x− x′‖2 =

∑L−1
n=0 |xn − x′n|2 then it is easy to show that

ĉi = arg min
ci∈RL

E
[
ρ(X, ci)|X ∈ Si

]
(13)

= E
[
X|X ∈ Si

]
(14)

=

∫
x∈Si

φX(x)x dx∫
x∈Si

φX(x) dx
. (15)

Furthermore, if X is stationary and ergodic, then one can approximate the centroid by
the sample average obtained simply by drawing a large number of points from Si and
taking their average [16].

Unfortunately, it is generally hard to design a jointly optimal encoder and decoder
pair (α(·), β(·)). However, there exist iterative design algorithms which yield locally
optimal quantizers. One such algorithm is Lloyd’s algorithm, which was originally
defined for the scalar case [18] and later extended to the vector case [19].

Lloyd’s algorithm (and its extension to the vector case) is basically a cyclic mini-
mizer that alternates between two stages; given an optimal encoder α, find the optimal
decoder β and given an optimal decoder find an optimal encoder. More specifically, we
first construct a random set of codewords C. Then we repeatedly apply the following
two steps:

1. Given a set of centroids C = {ci}M
i=1, find the Voronoi cells S = {Si}M

i=1 by use
of (10).

2. Given a set of decision cells S = {Si}M−1
i=0 find the centroids C = {ci}M

i=1 by
use of (12).

This approach guarantees convergence to a (local) minimum [20].2

Scenario Generation by Vector Quantization Techniques We will now establish a
connection between the extended Lloyd’s VQ design algorithm and scenario generation
in stochastic MPC.3

Let zk ∈ RL be a state vector that satisfies the Markovian recursion given by

zk+1 = f(zk, ωk) (16)

2In practice, one can run the codebook design algorithm for several initial guesses and choose the one
that yields the lowest distortion (on the same test data).

3It is worth emphasizing that the related k-means algorithm [21] has been adapted for a specific instance
of scenario generation in [11]. Our extension includes allowing arbitrary cost functions and imposing desired
tree structures.

where ωk ∈ RL is an arbitrary distributed random vector process.
In the special case where ωk ∈ {wk(0), ωk(1)}, i.e. the disturbance, can take on

only two distinct values at every time instant k, then the evolving state sequence de-
scribes a binary tree as shown in Fig. 3. The root of the tree describes the initial state

z0

z1(0)

z1(1)

z2(0)

z2(1)

z2(2)

z2(3)

w0(0)

w0(1)

w1(0)

w1(1)

w1(0)

w1(1)

k = 0 k = 1 k = 2

Figure 3: Binary tree.

z0 at time k = 0. Then, at time k = 1, the next state, i.e. z1 will take on the value
z1(0) or z1(1) depending upon whether the event ω0(0) or ω0(1) happens. At time
k = 2, if the previous state was z1(0), the current state will be either z2(0) or z2(1).
Similarly, if the previous state was z1(1) then the current state will be either z2(2) or
z2(3) depending on the actual realization of the uncertain disturbance ωk. Thus, four
different state trajectories are possible and at time k = 0 it is not known in advance
which one of them will eventually happen. The only information that is available at
time k = 0 is the statistics, i.e. the probability of each of the trajectories. Notice that
we can describe each trajectory, i.e. each path in the tree, by a sequence of disturbances.
Specifically, the ith path can be described by the sequence ωi = (ω0(i), ω1(i)), where
i ∈ {0, . . . , 3}. In the general case where we have N + 1 stages in the tree and M
distinct end nodes {zN (i)}, i = 1, . . . ,M , which (in the case of the binary tree) cor-
responds to M distinct paths in the tree, we have ωi = (ω0(i), ω1(i), . . . , ωN−1(i)).
Furthermore, there is a one-to-one correspondence between the sequence of distur-
bances ωi and the sequence of state vectors zi = (z0(i), z1(i), . . . , zN (i)). To see this,
recall that zk+1(i) = fk(zk(i), ωk(i)).

With the above, we will refer to a sequence of disturbances, say ωi, as a scenario.
In particular, ωi denotes the ith scenario. We are interested in scenario generation
for finite-horizon stochastic MPC. If the disturbances takes on only a finite number of
possible values at each time instant, then we can form a scenario tree, e.g. as the one
shown in Fig. 3. Of course, many other trees are possible, cf. Figs. 4(a) and 4(b).

It is often the case that the disturbances take on a continuum of values. In this
case, we seek to form a finite number of scenarios by discretizing the set of possible
disturbances. Specifically, we wish to design M distinct scenarios, whose trajectories
capture the evolution of the the most likely state sequences. In other words, the set of
M candidate scenarios should (on average) be a good approximation of all possible se-
quences of disturbances. Thus, we actually wish to design a codebook C in the ω-space

z0

z1(0)

z1(1)

z1(2)

z1(3)

z2(0)

z2(1)

z2(2)

z2(3)

w0(0)

w0(1)
w0(2)

w0(3)

w1(0)

w1(1)

w1(2)

w1(3)

k = 0 k = 1 k = 2
(a) No node sharing

z0

z1(0)

z1(3)

z2(0)

z2(1)

z2(3)

w0(0)

w0(3)

w1(0)

w1(1)

w1(2)

w1(3)

k = 0 k = 1 k = 2
(b) Partial node sharing

Figure 4: Different scenario trees.

having M codewords where the codewords {ωi ∈ C}M
i=1 are themselves scenarios.

Let JN be the N -horizon cost function defined by

JN , E min
ωi∈C

ρN (z, zi) (17)

= min
S

M∑
i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (18)

where
ω̂i = arg min

ωi∈RL(N+1)
E[ρN (z, zi)|ω ∈ Si] (19)

is the generalized centroid of an optimal nearest neighbor quantizer, Si ⊂ RL(N+1)

and ρN (·, ·) is given by

ρN (z, zi) = ‖z − zi‖2
Q (20)

=
N∑

k=0

‖zk − zk(i)‖2
Qk

(21)

where {Qk ∈ RL×L}, k = 0, . . . , N is a sequence of weighting matrices and Q =
diag(Q0, . . . , QN).

Interestingly, this approach yields a jointly (locally) optimal distribution of code-
words over the temporal as well as spatial dimensions. Note, however, that one has
no control over the resulting structure of the scenario tree. In fact, a likely outcome
is a scenario tree with a root node that branches into M separate deterministic paths
(similar to Fig. 4(a) for the case of M = 4).

Imposing a Tree Structure on the Scenarios In the previous section we allowed
arbitrary scenario trees. Clearly, this yields the lowest possible cost. Nonetheless, in

stochastic closed loop planning one requires that the future uncertainty be progres-
sively reduced as the stages proceed. Thus, a tree like structure is required in the
scenario space, see also [12, 14, 15, 11]. We will impose a particular tree structure
which is especially suited to the Dynamic Programming formulation of stochastic op-
timal control. In the chosen tree structure the nodes of the tree share common points.
We enforce this by adding linear equality constraints at each node in the code book
generation algorithm. Let ΥM

N denote the set of all possible tree structures containing
exactly M distinct paths each having N +1 nodes. For example, Figs. 3, 4(a), and 4(b),
all belong to Υ4

2. It should be clear that any codebook C having M codewords {ωi}M
i=1

(each having N elements ωi
k, k = 0, . . . , N−1) admits a tree Γ ∈ ΥM

N . We write C .Γ
if C admits the specific scenario tree described by Γ.

When we restrict the codebook to admit a specific scenario tree, the codeword
separation described in (19) does not apply and one needs to design the full codebook
simultaneously. Specifically, given a scenario tree Γ ∈ ΥM

N and a set of decision cells
S = {Si ∈ RL : i = 1, . . . ,M}, the optimal set Ĉ of codewords must jointly satisfy:

Ĉ = arg min
C.Γ

M∑
i=1

P (ω ∈ Si)E[ρN (z, zi)|ω ∈ Si] (22)

where the minimization is now over discrete sets C ⊂ RL(N+1) satisfying |C| = M in
addition to C . Γ, which has the equivalent interpretation of minimizing over points in
a higher dimensional vector space, i.e. C ∈ RML(N+1) subject to C . Γ.

We thus modify Lloyd’s algorithm to alternate between updating the decision cells
S using (10) keeping the codebook C fixed and updating the codebook using (22) keep-
ing the decision cells fixed.

Example of Scenario Generation To illustrate the principle behind the proposed
scenario generation technique, we carry out a simple simulation. Let zk+1 = 0.9zk +
ωk where zk, ωk ∈ R and ωk is a zero-mean unit-variance Gaussian distributed random
variable. Let the horizon length be N = 4 and let the number of codewords be M =
16. It follows that we are interested in finding 16 “good” 4-dimensional codewords
{ωi}4

i=1 defined in the ω-space, which admit a specific scenario tree, say a binary
tree. For simplicity, we will minimize the squared error in the state-space domain, i.e.
ρN (z, zi) = ‖z − zi‖2.

We now first randomly pick a set of 16 codewords (from the distribution of ω)
which admits a binary scenario tree. We then randomly draw 20, 000 4-dimensional
vectors (also from the distribution of ω) to be used as “training” vectors.4 Finally,
we alternate between numerically evaluating (10) and (22) given the training set. The
resulting codebook and scenario tree after five iterations is illustrated in Figs. 5(a) and
5(b), respectively.

5 Return to the Motivational Problem
Finally, we return to the optimal mine planning example. We recall that the state for this
problem has two decoupled components; namely the mine depth at various locations
and the ore price. For simplicity we assume that the current ore price states can be
measured.

4In the case of simple distributions in the ω-space, it might be possible to explicitly derive the associated
distribution in the z-space. This is convenient, since it eliminates the need for “training” vectors.

0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

(a) 16 (4-dimensional) codewords

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

(b) The resulting binary scenario tree

Figure 5: The resulting codebook and scenario tree after five iterations of the modified
Lloyd’s algorithm.

We can set the problem up as a large problem in which we assign a different control
action to each node of the scenario tree. This implicitly imposes a mapping from the
measured state to the control input [5].

We utilize the scenario tree for ore price to evaluate the current control as a function
of the measured state x0. Now time is advanced 1 step to k = 1. Since we have
discretized the scenario space, the measured value of x1 will, with probability one, not
coincide with any of the values used in evaluating the current input. Thus, the scenario
tool is really only a computational device to allow us to compute the current control
action µ0 whilst accounting (in some way) for the fact that, in the future, we will
actually know more than we do now. In other words, exactly as in the simple example
of Section 3, we utilize scenarios to ensure that the first step is made in the knowledge
that more will be known in the future.

Of course, the fact that the measured value of x1 is not exactly equal to any of the
values used the calculation should not be of great concern to us. All we need to do is
to react to the measured value of x1 at time 1 and recalculate u1 by the same procedure
as was used to evaluate µ0.

We call the above strategy a receding horizon closed loop policy.

6 Conclusion
This paper has described a novel approach to scenario generation aimed at complex
nonlinear model predictive control problems. We have shown that the problem can
be formulated in the framework of codebook design for vector quantization. We have
also shown how the method can be embellished in several ways, e.g. by imposing a
tree structure on the scenarios. A crucial point to note is that extensive off-line cal-
culations (needed to generate the scenarios) are used to simplify the necessary on-line
computational burden.5

5We have verified the advantages of this approach in the context of optimal mine planning in collaborative
work with BHP-Billiton.

References
[1] G. C. Goodwin, M. M. Serón, and D. Q. Mayne, “Optimization opportunities in mining,

metal and mineral processing,” Annual Reviews in Control, vol. 32, no. 1, pp. 17–32,
2008.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model
predictive control: Optimality and stability,” Automatica, vol. 36, pp. 789–814, 2000.

[3] G. C. Goodwin, M. M. Serón, and J. A. De Doná, Constrained Control & Estimation –
An Optimization Perspective. London: Springer Verlag, 2005.

[4] E. F. Camacho and C. Bordons, Model Predictive Control. New York, N.Y.: Springer-
Verlag, 1999.

[5] C. R. Rojas, G. C. Goodwin, and M. M. Serón, “Open-cut mine planning via closed-loop
receding horizon optimal control” in Identification and control: The gap between theory
and practice, R. Sánchez-Peña, J. Quevedo and V. Puig Cayuela, Eds., Springer-Verlag,
2007.

[6] S. E. Dreyfus, “Some types of optimal control of stochastic systems,” J. SIAM, Series
A: Control, vol. 2, no. 1, pp. 120–134, 1964.

[7] D. P. Bertsekas, “Dynamic programming and suboptimal control : A survey from adp to
mpc,” European J. Contr., vol. 11, no. 4–5, pp. 310–334, 2005.

[8] M. Cannon, B. Kouvaritakis, and X. Wu, “Stochastic predictive control with probabilis-
tic constraints,” Automatica, to appear.

[9] G. C. Pflug, Optimization of Stochastic Models: The Interface Between Simulation and
Optimization. Boston: Kluwer Academic Publishers, 1996.

[10] D. Muñoz de la Peña, A. Bemporad, and T. Alamo, “Stochastic programming applied to
model predictive control,” in Proc. IEEE Conf. Decis. Contr. and Europ. Contr. Conf.,
(Seville, Spain), pp. 1361–1366, Dec. 2005.

[11] G. C. Pflug, “Scenario tree generation for multiperiod financial optimization by optimal
discretization,” Math. Program., Ser. B, vol. 89, pp. 251—271, 2001.

[12] R. Mirkov and G. C. Pflug, “Tree approximations of stochastic dynamic programs,”
SIAM Journal on Optimization, vol. 18, no. 3, pp. 1082–1105, 2007.

[13] R. Hochreiter and G. C. Pflug, “Financial scenario generation for stochastic multi-
stage decision processes as facility location problems,” Ann Oper Res, vol. 152, no. 1,
pp. 257–272, 2007.

[14] N. Gülpınar, B. Rustem, and R. Settergren, “Simulation and optimization approaches to
scenario tree generation,” Journal of Economic Dynamics & Control, vol. 28, pp. 1291–
1315, 2004.

[15] D. Kuhn, “Aggregation and discretization in multistage stochastic programming,” Math.
Program., Ser. A, vol. 113, pp. 61–94, 2008.

[16] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, 1992.

[17] R. M. Gray and D. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory, vol. 44, no. 6,
pp. 2325 – 2383, 1998.

[18] S. P. Lloyd, “Least squares quantization in PCM.” Unpublished Bell Laboratories tech-
nical note, 1957.

[19] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE
Trans. Commun., vol. 28, pp. 84 – 95, January 1980.

[20] R. Gray, J. Kieffer, and Y. Linde, “Locally optimal block quantizer design,” Information
and Control, vol. 45, pp. 178 – 198, May 1980.

[21] J. MacQueen, “Some methods for classification and analysis of multivariate observa-
tions,” in Proc. 5th Berkeley Symp., vol. 1, pp. 281–297, 1967.

